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Abstract

In this paper, we obtain a non-abelian analogue of Lubkin's embedding theorem
for abelian categories. Our theorem faithfully embeds any small regular Mal'tsev
category C in an n-th power of a particular locally �nitely presentable regular Mal'tsev
category. The embedding preserves and re�ects �nite limits, isomorphisms and regular
epimorphisms, as in the case of Barr's embedding theorem for regular categories.
Furthermore, we show that we can take n to be the (cardinal) number of subobjects
of the terminal object in C.
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1 Introduction

One of the most famous results in category theory might be the Yoneda lemma and as a
corollary, the Yoneda embedding. As we know, for every small category C, it constructs
a fully faithful embedding C ↪→ SetC

op
which preserves limits. Therefore, for some type

of statements about limits, one only needs to produce the proof in Set to get the result in
any category. One can thus say that the category Set of sets `represents' all categories.

Moreover, Set also represents regular categories (i.e., �nitely complete categories with
coequalisers of kernel pairs and pullback stable regular epimorphisms [2]). Indeed, Barr's
embedding theorem [3] enables us to restrict to Set the proof of some statements about
�nite limits and regular epimorphisms in regular categories. Note that the key ingredients
of regularity are precisely about �nite limits and regular epimorphisms. In the same way,
a wide range of statements about �nite limits and �nite colimits in abelian categories can
be restricted to Ab, the category of abelian groups [17, 11, 20].

Whereas abelian categories do not cover important algebraic examples such as the
categories of groups or rings, the notion of a regular category is in some sense too general
because every (quasi)-variety of universal algebras is a regular category. Therefore, one
needs some intermediate classes of categories to study the categorical properties of groups.
To achieve this, regular Mal'tsev categories have been introduced in [8] as regular categories
in which the composition of equivalence relations is commutative. This is equivalent to the
property that every re�exive relation is an equivalence [8]. This condition is equivalent in
the more general context of �nitely complete categories to the condition that each relation
is difunctional; and this is the property that de�nes Mal'tsev categories in this context [9].
Their name comes from the mathematician Mal'tsev who characterised [19] (one-sorted
�nitary) algebraic categories in which this property holds as the ones whose corresponding
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theory admits a ternary term p(x, y, z) satisfying the identities p(x, y, y) = x = p(y, y, x).
These characterisations are recalled in Section 2.

The aim of this paper is to prove an embedding theorem for regular Mal'tsev categories.
The `representing category' will be the category of models of a �nitary essentially algebraic
theory (i.e., a locally �nitely presentable category [12, 1]). As in the algebraic case, objects
in such categories are given by an S-sorted set A (i.e., an object in SetS , for a set S
of sorts) endowed with �nitary operations As1 × · · · × Asn → As satisfying some given
equations. The di�erence is that some of these operations can be only partially de�ned
(and de�ned exactly for those n-tuples satisfying some given equations involving totally
de�ned operations). We recall this concept in Section 3. We also characterise there those
categories of models which are regular and those that are Mal'tsev (via a ternary Mal'tsev
term as in the varietal case, see Theorem 3.4). We then construct the `representing' regular
Mal'tsev category Mod(ΓMal) using those characterisations.

Section 4 is devoted to the proof of our embedding Theorem 4.4: every small regular
Mal'tsev category C admits a faithful embedding into Mod(ΓMal)

Sub(1) which preserves and
re�ects �nite limits, isomorphisms and regular epimorphisms. Here, Sub(1) denotes the
set of subobjects of the terminal object 1 in C. This proof uses three main ingredients: ap-
proximate Mal'tsev co-operations (introduced in [7] and recalled in Section 2), the Yoneda
embedding C ↪→ Lex(C,Set)op (which lifts the property of being regular Mal'tsev from C
to Lex(C, Set)op, see Proposition 4.3) and a C-projective covering of Lex(C, Set)op [3, 14].
We can notice that, with this technique, we could also have embedded each small regular
Mal'tsev category in a power of the category of approximate Mal'tsev algebras. These
are pairs of sets A,B together with two operations p : A3 → B, a : A → B satisfying the
axioms p(x, y, y) = a(x) = p(y, y, x). However, this category is not a Mal'tsev category
and therefore we have had to re�ne this argument considering the essentially algebraic
category Mod(ΓMal), which is a regular Mal'tsev category.

Due to this embedding theorem, one can reduce the proof of some propositions about
�nite limits and regular epimorphisms in a regular Mal'tsev category to the particular case
of Mod(ΓMal). One is then allowed to use elements and (approximate) Mal'tsev operations
to prove some statements in a regular Mal'tsev context. An example of such an application
is given in Section 5. Note that our embedding is not full, but it re�ects isomorphisms,
which is enough for such applications. Indeed, fullness of an embedding C ↪→ MP is not
helpful when we look at the components evP : MP → M (which is what we do when we
reduce a proof to M).
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2 Regular Mal'tsev categories

A regular category is a �nitely complete category with coequalisers of kernel pairs and
pullback stable regular epimorphisms [2]. They admits a (regular epi, mono)-factorisation
system (i.e., a factorisation system (E ,M) where E is the class of all regular epimorphisms
and M is the class of all monomorphisms). Moreover, in such categories, two relations
R� X × Y and S � Y × Z can be composed to form a relation S ◦ R� X × Z. This
gives rise to the so called `calculus of relations'.
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In this context of regular categories, Mal'tsev categories were introduced in [8]. Two
years later, in [9], the authors enlarged this notion of a Mal'tsev category in the context
of �nitely complete categories.

De�nition 2.1. [9] A �nitely complete category C is a Mal'tsev category if every re�exive
relation r : R� X ×X is an equivalence relation.

In order to recall some well-known characterisations of Mal'tsev categories, we �rst
need to recall what are difunctional relations.

De�nition 2.2. [9] A difunctional relation in a �nitely complete category C is an internal
relation r = (r1, r2) : R� X×Y such that, when we consider the following diagram where
both squares are pullbacks and tw the twisting isomorphism,

S //
��

��

R
��
r
��

Too
��

��
R×R

r2×r1
// Y ×X

tw
// X × Y R×R

r1×r2
oo

the canonical monomorphism S ∩ T � T is an isomorphism.

In the category Set of sets (or any algebraic category), a relation R ⊆ X × Y is
difunctional if it satis�es

(xRy ∧ xRy′ ∧ x′Ry′)⇒ x′Ry

for all x, x′ ∈ X and y, y′ ∈ Y .

Theorem 2.3. [9] Let C be a �nitely complete category. The following statements are
equivalent.

1. C is a Mal'tsev category.

2. Any re�exive relation in C is symmetric.

3. Any re�exive relation in C is transitive.

4. Any relation r : R� X × Y is difunctional.

5. Any relation r : R� X ×X is difunctional.

In a regular context, we have even more characterisations.

Theorem 2.4. [8] Let C be a regular category. The following statements are equivalent.

1. C is a Mal'tsev category.

2. The composite of two equivalence relations on the same object is an equivalence
relation.

3. If R and S are equivalence relations on the same object, then R ◦ S = S ◦R.

4. For every re�exive graph,

G
d //
c
// X

s

cc
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the pullback of (d, c) along (c, d) is a regular epimorphism.

P //

����

G

(d,c)

��
G

(c,d)
// X ×X

The name of Mal'tsev categories comes from the following result of A.I. Mal'tsev.

Theorem 2.5. [19] Let T be a �nitary one-sorted algebraic theory. Then, the category of
T -algebras AlgT is a Mal'tsev category if and only if T contains a ternary term p(x, y, z)
satisfying the identities

p(x, y, y) = x = p(y, y, x).

Finally, we will need one more characterisation of Mal'tsev categories in a regular
context. In [7], the authors de�ne an approximate Mal'tsev co-operation on X (for an
objectX in a �nitely complete category with binary coproducts) as a morphism p : Y → 3X
together with an approximation a : Y → X such that the square

Y
p //

a

��

3X(
ι1 ι1
ι2 ι1
ι2 ι2

)
��

X
(ι1,ι2)

// (2X)2

commutes. For each object X, one can build the universal approximate Mal'tsev co-

operation (pX , aX) on X by considering the following pullback.

M(X)
pX //

aX

��

3X(
ι1 ι1
ι2 ι1
ι2 ι2

)
��

X
(ι1,ι2)

// (2X)2

Theorem 2.6 (Theorem 4.2 in [7]). Let C be a regular category with binary coproducts.
The following statements are equivalent:

1. C is a Mal'tsev category.

2. For each X ∈ C, there is an approximate Mal'tsev co-operation on X for which the
approximation a is a regular epimorphism.

3. For each X ∈ C, the universal approximate Mal'tsev co-operation on X is such that
the approximation aX is a regular epimorphism.

3 Finitary essentially algebraic categories

A locally �nitely presentable category is a cocomplete category which has a strong set of
generators formed by �nitely presentable objects. We know from [12] that locally �nitely
presentable categories are, up to equivalence, exactly the categories of the form Lex(C,Set)
for a small �nitely complete category C (i.e., the category of �nite limit preserving functors
from C to Set). Moreover, they have been further characterised as `�nitary essentially
algebraic categories'.
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3.1 Essentially algebraic theories and their models

An essentially algebraic category is, roughly speaking, a category of (many-sorted) al-
gebraic structures with partial operations. The domains of de�nition of these partial
operations are themselves de�ned as the solution sets of some totally de�ned equations.

More precisely, an essentially algebraic theory is a quintuple Γ = (S,Σ, E,Σt,Def)
where S is a set (the set of sorts), Σ is an S-sorted signature of algebras, E is a set of Σ-
equations, Σt ⊆ Σ is the subset of `total operation symbols' and Def is a function assigning
to each operation symbol σ :

∏
i∈I si → s in Σ \ Σt a set Def(σ) of Σt-equations in the

variables xi of sort si (i ∈ I).
A model A of an essentially algebraic theory Γ is an S-sorted set (As)s∈S ∈ SetS

together with, for each operation symbol σ :
∏
i∈I si → s in Σ, a partial function

σA :
∏
i∈I

Asi → As

such that:

� for each σ ∈ Σt, σ
A is de�ned everywhere,

� for each σ :
∏
i∈I si → s in Σ \Σt and any (ai ∈ Asi)i∈I , σA((ai)i∈I) is de�ned if and

only if the elements ai's satisfy the equations of Def(σ) in A,

� A satis�es the equations of E wherever they are de�ned.

If A and B are two Γ-models, a homomorphism f : A → B of models is an S-sorted
function (fs : As → Bs)s∈S such that, for each σ :

∏
i∈I si → s in Σ and any (ai ∈ Asi)i∈I

such that σA((ai)i∈I) is de�ned,

fs(σ
A((ai)i∈I)) = σB((fsi(ai))i∈I). (1)

Notice that if (1) holds for all σ ∈ Σt, then, for each σ
′ ∈ Σ\Σt, σ

′B((fsi(ai))i∈I) is de�ned
if σ′A((ai)i∈I) is, while the converse does not hold in general. The category of Γ-models
and their homomorphisms is denoted by Mod(Γ). A category which is equivalent to some
model category Mod(Γ) for an essentially algebraic theory Γ is called essentially algebraic.

If all arities of Σ are �nite, if each equation of E and of all Def(σ)'s uses only a
�nite number of variables and if all sets Def(σ)'s are also �nite, Γ is called a �nitary

essentially algebraic theory. A category which is equivalent to some category Mod(Γ) for a
�nitary essentially algebraic theory Γ is called a �nitary essentially algebraic category. As
mentioned above, they are exactly the locally �nitely presentable categories.

Theorem 3.1. [12, 1] A category is locally �nitely presentable if and only if it is a �nitary
essentially algebraic category.

The basic examples of �nitary essentially algebraic categories are �nitary (many-sorted)
quasi-varieties and so in particular �nitary (many-sorted) varieties. The category Cat of
small categories is also �nitary essentially algebraic.

Let us now focus our attention to the forgetful functor U : Mod(Γ) → SetS for a �ni-
tary essentially algebraic theory Γ. As expected, we can easily prove that U creates small
limits so that they exists in Mod(Γ) and are computed in each sort as in Set. Moreover,
U preserves and re�ects monomorphisms and isomorphisms. Thus a homomorphism of
Γ-models is a monomorphism (resp. an isomorphism) if and only if it is injective (resp. bi-
jective) in each sort. In view of Theorem 3.1, Mod(Γ) is also cocomplete, but colimits



3. Finitary essentially algebraic categories 6

are generally harder to describe. In addition, we do not have an easy characterisation of
regular epimorphisms and Mod(Γ) is in general not regular.

We are now going to describe a left adjoint for the forgetful functor U : Mod(Γ)→ SetS .
In order to do so, we refer the reader to [1] for the de�nition of terms in Σ in the variables
of an S-sorted set X. By abuse of notation, by a (�nitary) term τ :

∏n
i=1 si → s of Σ,

we mean a term of Σ of sort s over the S-sorted set X which contains exactly one formal
symbol xi of sort si for each 1 6 i 6 n. Since Mod(Γ) is cocomplete, U has a left adjoint
as long as a re�ection of those �nite S-sorted sets X along U exists. Let us describe
it. If τ, τ ′ :

∏n
i=1 si → s are two terms of Σ, we say that τ = τ ′ is a theorem of Γ if

τ(a1, . . . , an) = τ ′(a1, . . . , an) holds in any Γ-model A and for any interpretation of the
variables of X in A (i.e., S-sorted function X → U(A)) such that both τ(a1, . . . , an) and
τ ′(a1, . . . , an) are de�ned. Then, we de�ne the set of everywhere-de�ned terms

∏n
i=1 si → s

as the smallest subset of the set of terms of Σ in the variables of X such that:

� for each element xk ∈ Xsk , the k-th projection
∏n
i=1 si → sk is an everywhere-de�ned

term,

� if (τj :
∏n
i=1 si → sj)j∈{1,...,m} are everywhere-de�ned terms and σ :

∏m
j=1 s

j → s
is an operation symbol of Σ such that, either σ ∈ Σt or σ ∈ Σ \ Σt and, for each
equation (µ, µ′) of Def(σ), µ(τ1, . . . , τn) = µ′(τ1, . . . , τn) is a theorem of Γ, then
σ(τ1, . . . , τn) :

∏n
i=1 si → s is everywhere-de�ned.

Now, Fr(X)s is the set of equivalence classes of everywhere-de�ned terms τ :
∏n
i=1 si → s

of Σ, where we identify the terms τ and τ ′ if and only if τ = τ ′ is a theorem of Γ. The
operations on Fr(X) and the S-sorted function X → U(Fr(X)) are de�ned in the obvious
way. The fact that this S-sorted function is the re�ection of X along U can be deduced
easily from the de�nitions. We thus have an adjunction Fr a U .

3.2 Regular Mal'tsev �nitary essentially algebraic categories

For a small �nitely complete category C, Lex(C,Set) is a regular category if and only if C
is weakly coregular [10]. Moreover, in [13], the authors describe the categories C for which
Lex(C,Set) is a regular Mal'tsev category. On the other hand, the categories of the form
Mod(Γ) for a �nitary Γ can equivalently be written as Lex(C, Set) for some small �nitely
complete category C. This category C can be chosen (up to equivalence) as the dual of
the full subcategory of �nitely presentable objects in Mod(Γ) [12]. However, those objects
are hard to describe in general and it is not easy to derive a direct characterisation of
those Γ's for which Mod(Γ) is regular or regular Mal'tsev from the previous ones. In this
subsection we give a direct characterisation of those �nitary essentially algebraic theories
whose categories of models are regular, and separately, those whose categories of models
are Mal'tsev categories. The more general case of a (non necessarily �nitary) essentially
algebraic theory is similar and appears in [15].

We start by describing a (strong epi, mono)-factorisation system in Mod(Γ), for an ar-
bitrary �nitary essentially algebraic theory Γ (by a (strong epi, mono)-factorisation system
we mean a factorisation system (E ,M) where E is the class of all strong epimorphisms and
M is the class of all monomorphisms). Let f : A → B be a homomorphism of Γ-models.
By abuse of notation, we will often write f(a) instead of fs(a) for s ∈ S and a ∈ As. We
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consider the submodel I of B such that, for all s ∈ S,

Is = {τ(f(a1), . . . , f(an)) |ai ∈ Asi and τ :
n∏
i=1

si → s is a �nitary term of Σ which

is de�ned in B on (f(a1), . . . , f(an))}.

We can thus view I as the smallest submodel of B for which fs(a) ∈ Is for all s ∈ S and
a ∈ As. This means that the corestriction p : A→ I of f to I is a strong epimorphism and
f factors as f = ip with i the inclusion I ↪→ B. As usual, we will refer to I = Im(f) as
the image of f .

Before being able to describe those Γ's for which Mod(Γ) is regular, we need the
following lemma.

Lemma 3.2. Let Γ be a �nitary essentially algebraic theory and θ :
∏n
i=1 si → s a �nitary

term of Γ. If (ai ∈ Asi)i∈{1,...,n} are elements of a Γ-model A, we can �nd a strong
epimorphism q : A� B in Mod(Γ) such that θ(q(a1), . . . , q(an)) is de�ned and if f : A→
C is a homomorphism such that θ(f(a1), . . . , f(an)) is de�ned, then f factors uniquely
through q.

Proof. We are going to prove this lemma by induction on the number of steps used in
the construction of the term θ. If θ is a projection (or any everywhere-de�ned term), 1A
is the homomorphism we are looking for. Now, suppose θ uses the operation symbols or
projections σ1, . . . , σm ∈ Σ∪{pk :

∏n
i=1 si → sk | 1 6 k 6 n} as �rst step of its construction.

Thus, θ can be written as

θ(x1, . . . , xn) = θ′(σ1(x1, . . . , xn), . . . , σm(x1, . . . , xn))

where θ′ uses less steps than θ to be constructed. Let R be the smallest submodel of A×A
which contains (χ(a1, . . . , an), χ′(a1, . . . , an)) for all equations (χ, χ′) ∈ Def(σj) and all j
such that σj ∈ Σ \ Σt. Let q1 be the coequaliser of r1 and r2

R
r1 //
r2
// A

q1 // // B1

where ri = pir with r the inclusion R ↪→ A × A and p1 and p2 the projections. Thus, in
B1, all σj(q1(a1), . . . , q1(an)) are de�ned. Now, we use the induction hypothesis on θ′ to
build a universal strong epimorphism q2 : B1 � B such that

θ′(q2(σ1(q1(a1), . . . , q1(an))), . . . , q2(σm(q1(a1), . . . , q1(an))))

= θ′(σ1(q2q1(a1), . . . , q2q1(an)), . . . , σm(q2q1(a1), . . . , q2q1(an)))

= θ(q2q1(a1), . . . , q2q1(an))

is de�ned. Let us prove that q2q1 is the strong epimorphism we are looking for. Let
f : A → C be a homomorphism such that θ(f(a1), . . . , f(an)) is de�ned. Since the kernel
pair R[f ] of f contains (χ(a1, . . . , an), χ′(a1, . . . , an)) for all equations (χ, χ′) ∈ Def(σj)
and all j such that σj ∈ Σ \ Σt, we have R ⊆ R[f ] and fr1 = fr2. Therefore, f factors
through q1 as f = gq1. Finally, g factors through q2 since

θ(f(a1), . . . , f(an))

= θ(gq1(a1), . . . , gq1(an))

= θ′(σ1(gq1(a1), . . . , gq1(an)), . . . , σm(gq1(a1), . . . , gq1(an)))

= θ′(g(σ1(q1(a1), . . . , q1(an))), . . . , g(σm(q1(a1), . . . , q1(an))))

is de�ned.
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We are now able to describe regular �nitary essentially algebraic categories.

Proposition 3.3. Let Γ be a �nitary essentially algebraic theory. Then Mod(Γ) is a
regular category if and only if, for each �nitary term θ :

∏n
i=1 si → s of Γ, there exists

in Γ:

� a �nitary term π :
∏m
j=1 s

′
j → s,

� for each 1 6 j 6 m, an everywhere-de�ned term αj : s→ s′j and

� for each 1 6 j 6 m, an everywhere-de�ned term µj :
∏n
i=1 si → s′j

such that

� π(α1(x), . . . , αm(x)) is everywhere-de�ned,

� π(α1(x), . . . , αm(x)) = x is a theorem of Γ,

� αj(θ(x1, . . . , xn)) = µj(x1, . . . , xn) is a theorem of Γ for each 1 6 j 6 m.

Proof. Since Mod(Γ) is complete and has a (strong epi, mono)-factorisation system, it is
regular if and only if strong epimorphisms are pullback stable (see e.g. Proposition 2.2.2
in the second volume of [4]). So, let us suppose that the condition in the statement holds
in Γ and consider a pullback square

P
p′ //

f ′

��

B

f

��
A p

// // C

in Mod(Γ) with p a strong epimorphism. We have to prove that Im(p′) = B. So, let b ∈ Bs
for some s ∈ S. Since p is a strong epimorphism, there exists a �nitary term θ :

∏n
i=1 si → s

of Σ and elements ai ∈ Asi for each 1 6 i 6 n such that θ(p(a1), . . . , p(an)) is de�ned and
is equal to f(b). Let the terms π, αj 's and µj 's be given by the assumption for this θ. For
each j ∈ {1, . . . ,m},

f(αj(b)) = αj(f(b)) = αj(θ(p(a1), . . . , p(an)))

= µj(p(a1), . . . , p(an)) = p(µj(a1, . . . , an))

since αj and µj are everywhere-de�ned. But small limits in Mod(Γ) are computed in each
sort as in Set. Hence, dj = (µj(a1, . . . , an), αj(b)) ∈ Ps′j with

b = π(α1(b), . . . , αm(b)) = π(p′(d1), . . . , p
′(dm)).

Therefore, b ∈ Im(p′)s and p
′ is a strong epimorphism.

Conversely, let us suppose that Mod(Γ) is regular and let θ :
∏n
i=1 si → s be a �nitary

term of Σ. Let X be the S-sorted set which contains exactly, for each i ∈ {1, . . . , n}, an
element xi of sort si and Y the S-sorted set which contains exactly one element y of sort s.
We consider also the strong epimorphism q : Fr(X)� B given by Lemma 3.2, for the term
θ and the elements xi ∈ Fr(X)si . Thus θ(q(x1), . . . , q(xn)) is de�ned. Let f : Fr(Y ) → B
be the unique map such that f(y) = θ(q(x1), . . . , q(xn)) and consider the pullback of q
along f .

P
p // //

��

Fr(Y )

f

��
Fr(X) q

// // B
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Since Mod(Γ) is regular, p is also a strong epimorphism. So, y ∈ Im(p)s which means, using
the descriptions of P , Fr(X) and Fr(Y ), that there exist �nitary terms π :

∏m
j=1 s

′
j → s,

αj : s → s′j and µj :
∏n
i=1 si → s′j for each 1 6 j 6 m such that the αj 's and µj 's are

everywhere-de�ned, the equalities

y = π(p(µ1(x1, . . . , xn), α1(y)), . . . , p(µm(x1, . . . , xn), αm(y)))

= π(α1(y), . . . , αm(y))
(2)

hold and, for each j ∈ {1, . . . ,m},

µj(q(x1), . . . , q(xn)) = q(µj(x1, . . . , xn))

= f(αj(y))

= αj(f(y))

= αj(θ(q(x1), . . . , q(xn))).

(3)

Equalities (2) mean that π(α1(x), . . . , αm(x)) is everywhere-de�ned and

π(α1(x), . . . , αm(x)) = x

is a theorem of Γ. With the universal properties of Fr(X) and q, equalities (3) mean
that αj(θ(a1, . . . , an)) = µj(a1, . . . , an) holds in any Γ-model as soon as θ(a1, . . . , an) is
de�ned.

We characterise now those Γ's for which Mod(Γ) is a Mal'tsev category. This theorem
can be seen as a generalisation of Mal'tsev's Theorem 2.5.

Theorem 3.4. Let Γ be a �nitary essentially algebraic theory. Then Mod(Γ) is a Mal'tsev
category if and only if, for each sort s ∈ S, there exists in Γ a term ps : s3 → s such that

� ps(x, x, y) and ps(x, y, y) are everywhere-de�ned and

� ps(x, x, y) = y and ps(x, y, y) = x are theorems of Γ.

Proof. Since �nite limits in Mod(Γ) are computed in each sort as in Set, a relation R�
A×B in Mod(Γ) can be seen as a submodel of A×B and it is difunctional exactly when,
for each sort s ∈ S, Rs ⊆ As ×Bs is difunctional as a relation in Set.

Suppose �rst that such terms are given. Let R ⊆ A × B be a binary relation in
Mod(Γ), s ∈ S, a, a′ ∈ As and b, b′ ∈ Bs such that (a, b), (a, b′) and (a′, b′) are in Rs.
Since ps(a, a, a′) ∈ As and ps(b, b′, b′) ∈ Bs are de�ned, so is ps((a, b), (a, b′), (a′, b′)) in the
product A×B. Thus,

(a′, b) = (ps(a, a, a′), ps(b, b′, b′)) = ps((a, b), (a, b′), (a′, b′)) ∈ Rs

and R is difunctional.
Conversely, let us suppose that Mod(Γ) is a Mal'tsev category. Let s ∈ S be a sort and

X the S-sorted set such that Xs = {x, y} and Xs′ = ∅ for s′ 6= s. We denote by R the
smallest homomorphic binary relation on Fr(X) which contains (x, x), (x, y) and (y, y). It
is easy to prove that this submodel of Fr(X)× Fr(X) is actually given by

Rs′ = {(τ(x, x, y), τ(x, y, y)) | τ : s3 → s′ is a term and

τ(x, x, y) and τ(x, y, y) are everywhere-de�ned terms}

for all s′ ∈ S. Since Mod(Γ) is supposed to be a Mal'tsev category, R is difunctional and
(y, x) ∈ Rs. This gives the expected term ps.
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3.3 A �nitary essentially algebraic regular Mal'tsev category

In this subsection we are going to construct a �nitary essentially algebraic theory ΓMal for
which Mod(ΓMal) is a regular Mal'tsev category. This category of models is the one we
need for our embedding theorem.

Firstly, if Γ and Γ′ are two �nitary essentially algebraic theories, we will write Γ ⊆ Γ′

to mean S ⊆ S′, Σ ⊆ Σ′, E ⊆ E′, Σt ⊆ Σ′t, Σ \ Σt ⊆ Σ′ \ Σ′t and Def(σ) = Def ′(σ) for all
σ ∈ Σ \ Σt. In this case, we have a forgetful functor U : Mod(Γ′)→ Mod(Γ).

We are going to construct recursively a series of �nitary essentially algebraic theories

Γ0 ⊆ ∆1 ⊆ · · · ⊆ Γn ⊆ ∆n+1 ⊆ · · ·

We de�ne Γ0 as S0 = {?} and Σ0 = Σ0
t = E0 = ∅. Thus Mod(Γ0) ∼= Set. Now, suppose

we have de�ned
Γ0 ⊆ ∆1 ⊆ · · · ⊆ ∆n ⊆ Γn

with Γn = (Sn,Σn, En,Σn
t ,Defn). We are going to construct

∆n+1 = (S
′n+1,Σ

′n+1, E
′n+1,Σ

′n+1
t ,Def

′n+1)

�rst (below, S−1 = ∅):

S
′n+1 = Sn ∪ {(s, 0), (s, 1) | s ∈ Sn \ Sn−1} ∼= Sn t (Sn \ Sn−1) t (Sn \ Sn−1),

Σ
′n+1
t = Σn

t ∪ {αs : s→ (s, 0) | s ∈ Sn \ Sn−1}
∪ {ρs : s3 → (s, 0) | s ∈ Sn \ Sn−1}
∪ {ηs, εs : (s, 0)→ (s, 1) | s ∈ Sn \ Sn−1},

Σ
′n+1 = Σn ∪ Σ

′n+1
t ∪ {πs : (s, 0)→ s | s ∈ Sn \ Sn−1},

E
′n+1 = En ∪ {ρs(x, y, y) = αs(x) | s ∈ Sn \ Sn−1}

∪ {ρs(x, x, y) = αs(y) | s ∈ Sn \ Sn−1}
∪ {ηs(αs(x)) = εs(αs(x)) | s ∈ Sn \ Sn−1}
∪ {πs(αs(x)) = x | s ∈ Sn \ Sn−1}
∪ {αs(πs(x)) = x | s ∈ Sn \ Sn−1},

{
Def

′n+1(σ) = Defn(σ) if σ ∈ Σn \ Σn
t

Def
′n+1(πs) = {ηs(x) = εs(x)} for s ∈ Sn \ Sn−1.

This gives Γn ⊆ ∆n+1.

s3
ρs // (s, 0)

πstt

ηs //
εs
// (s, 1)

s

<<
αs

Now let Tn+1 be the set of �nitary terms θ :
∏m
i=1 si → s of Σ

′n+1 which are not terms
of Σ

′n (where we consider Σ
′0 = ∅). We then de�ne Γn+1 as:
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Sn+1 = S
′n+1 ∪ {sθ, s′θ | θ ∈ Tn+1} ∼= S

′n+1 t Tn+1 t Tn+1,

Σn+1
t = Σ

′n+1
t ∪ {αθ : s→ sθ | θ :

m∏
i=1

si → s ∈ Tn+1}

∪ {µθ :
m∏
i=1

si → sθ | θ :
m∏
i=1

si → s ∈ Tn+1}

∪ {ηθ, εθ : sθ → s′θ | θ ∈ Tn+1},

Σn+1 = Σ
′n+1 ∪ Σn+1

t ∪ {πθ : sθ → s | θ :
m∏
i=1

si → s ∈ Tn+1},

En+1 = E
′n+1 ∪ {ηθ(αθ(x)) = εθ(αθ(x)) | θ ∈ Tn+1}
∪ {πθ(αθ(x)) = x | θ ∈ Tn+1}
∪ {αθ(πθ(x)) = x | θ ∈ Tn+1}

∪ {αθ(θ(x1, . . . , xm)) = µθ(x1, . . . , xm) | θ :
m∏
i=1

si → s ∈ Tn+1},

{
Defn+1(σ) = Def

′n+1(σ) if σ ∈ Σ
′n+1 \ Σ

′n+1
t

Defn+1(πθ) = {ηθ(x) = εθ(x)} for θ ∈ Tn+1.

∏m
i=1 si

µθ //

θ
��

sθ

πθss

ηθ //
εθ
// s′θ

s

;;
αθ

We have constructed ∆n+1 ⊆ Γn+1 and this completes the recursive de�nition of

Γ0 ⊆ ∆1 ⊆ Γ1 ⊆ · · ·

Let ΓMal be the union of these �nitary essentially algebraic theories. By that we ob-
viously mean SMal =

⋃
n>0 S

n, ΣMal =
⋃
n>0 Σn, EMal =

⋃
n>0E

n, Σt,Mal =
⋃
n>0 Σn

t

and DefMal(σ) = Defn(σ) for all n > 0 and all σ ∈ Σn \ Σn
t . Remark that, for each

π : s′ → s ∈ ΣMal \Σt,Mal, there are three corresponding operation symbols in Σt,Mal, these
are α : s→ s′ and η, ε : s′ → s′′.

Proposition 3.5. Mod(ΓMal) is a regular Mal'tsev category.

Proof. The `∆ ingredient' of the construction of ΓMal ensures that Mod(ΓMal) is a Mal'tsev
category. Indeed, the terms πs ◦ ρs : s3 → s satisfy the conditions of Theorem 3.4.

On the other hand, the `Γ part' of ΓMal makes Mod(ΓMal) a regular category since
each �nitary term θ of ΣMal is in Tn+1 for some n > 0, which makes the conditions of
Proposition 3.3 hold.
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4 The embedding theorem

The aim of this section is to prove that, for each small regular Mal'tsev category C, there
exists a faithful embedding φ : C ↪→ Mod(ΓMal)

Sub(1) which preserves and re�ects �nite
limits, isomorphisms and regular epimorphisms. In order to do this, we still need to
recall/prove some other propositions about the embedding C ↪→ Lex(C,Set)op.

4.1 The embedding C ↪→ Lex(C, Set)op

Let us now turn our attention to the Yoneda embedding i : C ↪→ Lex(C,Set)op = C̃ for
a small category C with �nite limits. Due to this embedding, we will treat C as a full
subcategory of C̃. Firstly, let us recall the following theorems.

Theorem 4.1. [12] Let C be a small �nitely complete category. The following statements
hold.

1. C̃ is complete and cocomplete.

2. In C̃, co�ltered limits commute with limits and �nite colimits.

3. The embedding i : C ↪→ C̃ preserves all colimits and �nite limits.

4. For all A ∈ C̃, (A, (c)(C,c)∈(A↓i)) is the co�ltered limit of the functor

(A ↓ i) −→ C̃
c : A→ i(C) 7−→ i(C).

5. i : C ↪→ C̃ is the free co�ltered limit completion of C.

For precise de�nitions of co�ltered limits and their commutativity with limits and �nite
colimits, we refer the reader to Sections 2.12 and 2.13 of the �rst volume of [4].

We recall that P ∈ C̃ is regular C-projective (abbreviated here by C-projective) if, for
any diagram

P

g

��
C

f
// // C ′

where C,C ′ ∈ C and f is a regular epimorphism, there exists a morphism h : P → C such
that fh = g. By the Yoneda lemma, if we consider P as a �nite limit preserving functor
C → Set, morphisms P → C ′ in C̃ are in 1-1 correspondence with elements of P (C ′).
Thus, P ∈ C̃ is C-projective if and only if P : C→ Set preserves regular epimorphisms.

Theorem 4.2. (Theorems 2.2 and 2.7 in [3]) Let C be a small regular category. Then C̃
is regular and each object X ∈ C̃ admits a C-projective cover, i.e., a regular epimorphism
eX : X̂ � X where X̂ is C-projective.

We now prove that the regular Mal'tsev property is also `preserved' by the embedding
i : C ↪→ C̃.

Proposition 4.3. Let C be a small regular Mal'tsev category. Then C̃ is also a regular
Mal'tsev category.
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Proof. By Theorem 4.2, we already know that C̃ is regular. We are going to prove that C̃
is a Mal'tsev category using Theorem 2.4.4. So, let

G
d //
c
// X

s

cc

be a re�exive graph in C̃. By Lemma 5.1 in [18], it is a co�ltered limit of re�exive graphs
in C.

G
d //
c

//

λ1i

��

X

s

gg

λ0i

��
Gi

di //
ci

// Xi

si

gg

Since limits commute with limits, the pullback of (d, c) along (c, d) is the limit of the
corresponding pullbacks arising from the re�exive graphs in C.

P

λ2i

��

//

p
  

G

λ1i

��

(d,c)

$$
G

λ1i

��

(c,d)
// X ×X

λ0i×λ0i

��

Pi //

pi     

Gi
(di,ci)

$$
Gi

(ci,di)
// Xi ×Xi

Similarly, the kernel pair of p is the co�ltered limit of the kernel pairs of the pi's.

R

λ3i

��

r //
s
// P

λ2i

��

p // G

λ1i

��
Ri

ri //
si
// Pi pi

// // Gi

Since C is a Mal'tsev category, the pi's are regular epimorphisms, and so coequalisers of ri
and si. By Theorem 4.1, co�ltered limits commute with coequalisers in C̃. Thus, p, which
is the limit of the coequalisers of the ri's and si's, is the coequaliser of their limits r and
s. Therefore p is a regular epimorphism and C̃ is a regular Mal'tsev category.

Note that this preservation property of the embedding C ↪→ C̃ can be generalised to a
wide range of properties, see [15, 16].
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4.2 Proof of the embedding theorem

We are now able to prove our main theorem.

Theorem 4.4. Let C be a small regular Mal'tsev category and Sub(1) the set of subobjects
of its terminal object 1. Then, there exists a faithful embedding φ : C ↪→ Mod(ΓMal)

Sub(1)

which preserves and re�ects �nite limits, isomorphisms and regular epimorphisms. More-
over, for each morphism f : C → C ′ in C, each I ∈ Sub(1) and each s ∈ SMal,

(Imφ(f)I)s = {(φ(f)I)s(x) |x ∈ (φ(C)I)s}.

Proof. We know that C̃ is a regular Mal'tsev category (Proposition 4.3). In what follows,
we will denote by X̂ the C-projective covering of X ∈ C̃ given by Theorem 4.2. If C ∈ C
and P ∈ Sub(1), we are going to construct φ(C)P ∈ Mod(ΓMal). More precisely, we are
going to construct a ΓMal-model φ(C)P satisfying the following conditions:

1. For each s ∈ SMal, (φ(C)P )s = C̃(Ps, C) for some C-projective object Ps ∈ C̃.

2. For each π : s′ → s ∈ ΣMal \ Σt,Mal and its corresponding α : s→ s′, there is a given

regular epimorphism lα : Ps′ � Ps in C̃ such that

α : C̃(Ps, C)→ C̃(Ps′ , C)

f 7→ flα

and

π : C̃(Ps′ , C)→ C̃(Ps, C)

g 7→ the unique f such that flα = g

where π is de�ned if and only if such an f exists. For the corresponding η, ε : s′ → s′′,
we consider the kernel pair (v, w) of lα.

R̂
eR // // R

v //
w
// Ps′

lα // // Ps

We require then Ps′′ = R̂,

η : C̃(Ps′ , C)→ C̃(Ps′′ , C)

g 7→ gveR

and

ε : C̃(Ps′ , C)→ C̃(Ps′′ , C)

g 7→ gweR.

3. For each sort s ∈ SMal, we consider the universal approximate Mal'tsev co-operation
(pPs , aPs) on Ps

M̂(Ps)
eM(Ps)// //M(Ps)

pPs //

aPs
����

3Ps(
ι1 ι1
ι2 ι1
ι2 ι2

)
��

Ps
(ι1,ι2)

// (2Ps)
2
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where aPs is a regular epimorphism by Theorem 2.6. We require then P(s,0) = M̂(Ps)
and

ρs : C̃(Ps, C)3 → C̃(P(s,0), C)

(f, g, h) 7→
(
f
g
h

)
pPseM(Ps).

4. For each �nitary term θ :
∏m
i=1 si → s of ΣMal, there is a given morphism lµθ : Psθ →

Ps1 + · · ·+ Psm such that

µθ : C̃(Ps1 , C)× · · · × C̃(Psm , C)→ C̃(Psθ , C)

(f1, . . . , fm) 7→

(
f1
...
fm

)
lµθ .

Since ΓMal is the union of the series

Γ0 ⊆ ∆1 ⊆ Γ1 ⊆ · · ·

of essentially algebraic theories, to construct a ΓMal-model φ(C)P , it is enough to construct
recursively a Γn-model for each n > 0 such that they agree on the common sorts and
operations. Firstly, to de�ne a Γ0-model, we set P? to be the coproduct of the Ĉ ′'s for all
C ′ ∈ C such that the image of the unique morphism C ′ → 1 is P ∈ Sub(1). This object
P? is C-projective since it is the coproduct of C-projective objects.

Now, we suppose we have de�ned a Γn-model satisfying the above conditions. We are
going to extend it to a Γn+1-model with the same properties. Firstly, we extend it to a
∆n+1-model. Let s ∈ Sn \ Sn−1. Condition 3 above imposes the constructions of P(s,0)

and ρs. Moreover, condition 2 with lαs = aPseM(Ps) from condition 3 de�nes αs, πs, P(s,1),
ηs and εs. It follows then from the de�nitions that this indeed gives a ∆n+1-model which
satis�es conditions 1�4.

It remains to extend it to a Γn+1-model. In order to simplify the proof, we are going
to construct Psθ , lµθ and lαθ for each �nitary term θ :

∏m
i=1 si → s of Σ

′n+1 such that it
matches the previous construction if θ is actually a term of Σ

′n. Then, condition 2 will
de�ne αθ, πθ, Ps′θ , ηθ and εθ, while condition 4 imposes the de�nition of µθ. We are going
to do it recursively in such a way that the equality

αθ(θ(f1, . . . , fm)) = µθ(f1, . . . , fm)

holds for any cospan (fi : Psi → C)i∈{1,...,m} such that θ(f1, . . . , fm) is de�ned.
Firstly, let θ = pj :

∏m
i=1 si → sj be a projection (1 6 j 6 m). In this case, we

de�ne Psθ = Psj , lµθ = ιj : Psj → Ps1 + · · ·+ Psm the coproduct injection and lαθ = 1Psj .
Obviously, one has

αθ(θ(f1, . . . , fm)) = fj =

(
f1
...
fm

)
ιj = µθ(f1, . . . , fm)

for any cospan (fi : Psi → C)i∈{1,...,m}.

Secondly, let θ :
∏m
i=1 si → s′ be a �nitary term of Σ

′n+1 for which lµθ and lαθ have

been constructed. If π : s′ → s ∈ Σ
′n+1 \ Σ

′n+1
t has corresponding α : s → s′, we de�ne
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Psπ(θ) = Psθ , lαπ(θ) = lαlαθ and lµπ(θ) = lµθ .

Psπ(θ) = Psθ

lµπ(θ)=lµθ //

lαθ ����

lαπ(θ)

%% %%

Ps1 + · · ·+ Psm

Ps′ lα
// // Ps

If the cospan (fi : Psi → C)i∈{1,...,m} is such that θ(f1, . . . , fm) : Ps′ → C is de�ned, we
know from the previous step in the recursion that

θ(f1, . . . , fm)lαθ = αθ(θ(f1, . . . , fm)) = µθ(f1, . . . , fm).

If moreover π(θ(f1, . . . , fm)) : Ps → C is de�ned, we have

π(θ(f1, . . . , fm))lα = θ(f1, . . . , fm).

In this case,

απ(θ)(π(θ(f1, . . . , fm))) = π(θ(f1, . . . , fm))lαπ(θ)

= π(θ(f1, . . . , fm))lαlαθ
= θ(f1, . . . , fm)lαθ
= µθ(f1, . . . , fm)

= µπ(θ)(f1, . . . , fm).

Eventually, let us suppose that σ :
∏r
i=1 s

′
i → s ∈ Σ

′n+1
t is an operation symbol and,

for each 1 6 j 6 r, θj :
∏m
i=1 si → s′j is a �nitary term of Σ

′n+1 for which lµθj and lαθj
have been de�ned. We already have a corresponding morphism lσ : Ps → Ps′1 + · · · + Ps′r
such that

σ : C̃(Ps′1 , C)× · · · × C̃(Ps′r , C)→ C̃(Ps, C)

(f1, . . . , fr) 7→

(
f1
...
fr

)
lσ.

Let us consider the following diagram where the square is a pullback.

Psθ = Û
eU // // U

u2
����

u1 // Psθ1 + · · ·+ Psθr

lαθ1
+···+lαθr����


lµθ1...
lµθr


// Ps1 + · · ·+ Psm

Ps
lσ
// Ps′1 + · · ·+ Ps′r

Denoting the term σ(θ1, . . . , θr) :
∏m
i=1 si → s by θ, we de�ne Psθ = Û , lαθ = u2eU and

lµθ =

 lµθ1...
lµθr

u1eU .
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Then, if the cospan (fi : Psi → C)i∈{1,...,m} is such that θj(f1, . . . , fm) : Ps′j → C is de�ned

for all 1 6 j 6 r,

αθ(θ(f1, . . . , fm)) = σ(θ1(f1, . . . , fm), . . . , θr(f1, . . . , fm))lαθ

=

(
θ1(f1,...,fm)

...
θr(f1,...,fm)

)
lσu2eU

=

(
θ1(f1,...,fm)

...
θr(f1,...,fm)

)
(lαθ1 + · · ·+ lαθr )u1eU

=

(
αθ1 (θ1(f1,...,fm))

...
αθr (θr(f1,...,fm))

)
u1eU

=

(
µθ1 (f1,...,fm)

...
µθr (f1,...,fm)

)
u1eU

=

(
f1
...
fm

) lµθ1...
lµθr

u1eU

= µθ(f1, . . . , fm)

using the previous steps in the recursion.
We have thus de�ned a Γn+1-model which satis�es conditions 1�4. This concludes the

recursive construction of our Γn-model for each n > 0. Considering them all together, we
get a ΓMal-model φ(C)P .

Now, if f : C → C ′ ∈ C and P ∈ Sub(1), we de�ne a morphism φ(f)P : φ(C)P →
φ(C ′)P by

(φ(f)P )s : C̃(Ps, C)→ C̃(Ps, C
′)

g 7→ fg

for all s ∈ SMal. By conditions 2�4, φ(f)P is a ΓMal-homomorphism. This de�nes the
expected functor φ : C → Mod(ΓMal)

Sub(1). Let us now check that it satis�es all the
required properties.

Since �nite limits in Mod(ΓMal)
Sub(1) are computed componentwise, to prove that φ

preserves them, we only need to prove that φ(−)P : C→ Mod(ΓMal) preserves �nite limits
for each P ∈ Sub(1). Furthermore, since they are computed in each sort as in Set, we
only need to check that (φ(−)P )s : C → Set preserves �nite limits for all P ∈ Sub(1) and
all s ∈ SMal. But, by the Yoneda lemma, (φ(−)P )s is isomorphic to Ps : C → Set which
preserves �nite limits by de�nition. Therefore, φ preserves them as well.

Now, suppose that f : C → C ′ ∈ C is such that (φ(f)P )s is surjective for all P ∈ Sub(1)
and all s ∈ SMal. Let

C ′
p // // I // // 1

be the image factorisation of the unique morphism C ′ → 1. We recall that I? =
∐
Ĉ ′′

where the coproduct runs through all C ′′ such that the image of C ′′ → 1 is I. For each
such C ′′, there exists a morphism gC′′ making the diagram

Ĉ ′′
eC′′ // //

gC′′

��

C ′′

����
C ′ p

// // I // // 1
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commutative since Ĉ ′′ is C-projective. We choose gC′ = eC′ and consider the induced
morphism g : I? � C ′ which is a regular epimorphism since gι

Ĉ′ = gC′ is. But we have
supposed that f ◦− : C(I?, C)→ C(I?, C

′) is surjective. So, there is a morphism h : I? → C
such that fh = g, which implies that f is also a regular epimorphism. Moreover, since
each Ps is C-projective, this means that f is a regular epimorphism if and only if (φ(f)P )s
is surjective for all P ∈ Sub(1) and all s ∈ SMal. In particular, φ preserves regular
epimorphisms.

Now, let f, f ′ : C → C ′ be two morphisms of C such that (φ(f)P )s = (φ(f ′)P )s for
all P ∈ Sub(1) and all s ∈ SMal. Let e : E � C be their equaliser. Since φ preserves
equalisers, (φ(e)P )s is a bijection for all P ∈ Sub(1) and all s ∈ SMal. Hence, e is a regular
epimorphism and f = f ′. This shows that φ is faithful.

Let f : C → D ∈ C be such that (φ(f)P )s is injective for all P ∈ Sub(1) and all
s ∈ SMal. We want to prove that f is a monomorphism. So, suppose h, k : C ′ → C ∈ C are
such that fh = fk. Let g : I? � C ′ be the regular epimorphism de�ned as above. Thus,
fhg = fkg. Since f ◦ − : C̃(I?, C) → C̃(I?, D) is injective, we know that hg = kg. Hence
h = k and f is a monomorphism since g is a regular epimorphism. Therefore, φ re�ects
isomorphisms, �nite limits and regular epimorphisms.

It remains to check that, for f : C → C ′ ∈ C, P ∈ Sub(1) and s ∈ SMal,

(Imφ(f)P )s = {(φ(f)P )s(x) |x ∈ (φ(C)P )s}.

Consider π : s′ → s ∈ ΣMal \Σt,Mal and x ∈ C̃(Ps′ , C) such that π((φ(f)P )s′(x)) is de�ned.
So, there exists g : Ps → C ′ making the square

Ps′
x //

lα
����

C

f

��
Ps g

// C ′

commute (with α : s→ s′ corresponding to π). Let f = iq be the image factorisation of f .
Since lα is a regular epimorphism, there exists g′ : Ps → Im(f) such that ig′ = g. Since Ps
is C-projective, there exists a morphism y : Ps → C such that qy = g′. Thus, fy = g and
(φ(f)P )s(y) = g = π((φ(f)P )s′(x)). Therefore, in view of the description of the images
in categories of Γ-models on page 7 for any �nitary essentially algebraic theory Γ, this
concludes the proof.

5 Applications

Analogously to the metatheorems of [5], our embedding theorem gives a way to prove some
statements in regular Mal'tsev categories in an `essentially algebraic way' as follows.

Consider a statement P of the form ψ ⇒ ω where ψ and ω are conjunctions of properties
which can be expressed as

1. some �nite diagram is commutative,

2. some �nite diagram is a limit diagram,

3. some morphism is a monomorphism,

4. some morphism is a regular epimorphism,

5. some morphism is an isomorphism,
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6. some morphism factors through a given monomorphism.

Then, this statement P is valid in all regular Mal'tsev V-categories (for all universes V) if
and only if it is valid in Mod(ΓMal) (for all universes). Indeed, in view of Proposition 3.5,
the `only if part' is obvious. Conversely, if C is a regular Mal'tsev category, we can consider
it is small up to a change of universe. Then, by Theorem 4.4, it su�ces to prove P in
Mod(ΓMal)

Sub(1). Since every part of the statement P is `componentwise', it is enough to
prove it in Mod(ΓMal).

At a �rst glance, one could think this technique will be hard to use in practice, in
view of the di�cult de�nition of Mod(ΓMal). However, due to the additional property in
our Theorem 4.4, we can suppose that the homomorphisms f : A → B considered in the
statement P have an easy description of their images, i.e.,

(Im f)s = {fs(a) | a ∈ As}

for all s ∈ SMal. In particular, if f is a regular epimorphism, fs will be a surjective function
for all s ∈ SMal. Therefore, in practice, it seems we will never have to use the operations
αθ, µθ, ηθ, εθ and πθ. They were built only to make Mod(ΓMal) a regular category.

We illustrate now how to use the embedding theorem to prove a result in a regular
Mal'tsev category using an (essentially) algebraic argument. We refer the reader to [5] for
a de�nition of the category Pt(C) of points of C.

Lemma 5.1. (Proposition 4.1 in [6]) Let C be a regular Mal'tsev category. Consider a
commutative square in the category Pt(C) of points of C. This yields a cube where the
vertical morphisms are split epimorphisms with a given section. Suppose that the left and
right faces of this cube are pullbacks and p and q are regular epimorphisms.

X ×Y Z

����

&&

t // U ×V W

����

&&
Z

g

����

q // //W

k

����

X

OO

f &&

p // // U

OO

h
&&

Y

g′

OO

r
// // V

k′

OO

Then, the comparison map t is also a regular epimorphism.

Proof. It is enough to prove this lemma in Mod(ΓMal) supposing that p and q are surjective
in each sort. So, let s ∈ SMal, u ∈ Us and w ∈ Ws be such that h(u) = k(w) and let us
prove (u,w) ∈ Im(t)s. Since p and q are surjective, we can �nd x ∈ Xs and z ∈ Zs
such that p(x) = u and q(z) = w. Let z′ = ρs(g′f(x), g′g(z), z) ∈ Z(s,0). Since g(z′) =
ρs(f(x), g(z), g(z)) = αs(f(x)) = f(αs(x)), we can consider (αs(x), z′) ∈ (X ×Y Z)(s,0).
Moreover, since

q(z′) = ρs(qg′f(x), qg′g(z), q(z))

= ρs(k′hp(x), k′kq(z), q(z))

= ρs(k′h(u), k′k(w), w)

= ρs(k′k(w), k′k(w), w)

= αs(w),

we know that t(αs(x), z′) = (p(αs(x)), q(z′)) = (αs(u), αs(w)) = αs(u,w). Therefore, we
have (u,w) = πs(αs(u,w)) = πs(t(αs(x), z′)) ∈ Im(t)s.



5. Applications 20

References

[1] J. Adámek and J. Rosický, Locally presentable and accessible categories, London
Math. Soc. 189 (1994).

[2] M. Barr, Exact categories, Springer Lect. Notes Math. 236 (1971), 1�120.

[3] M. Barr, Representation of categories, J. Pure Appl. Algebra 41 (1986), 113�137.

[4] F. Borceux, Handbook of categorical algebra 1 and 2, Cambridge University Press

(1994).

[5] F. Borceux and D. Bourn, Mal'cev, protomodular, homological and semi-abelian
categories, Mathematics and Its Applications 566 (2004).

[6] D. Bourn, The denormalized 3× 3 lemma, J. Pure Appl. Algebra 177 (2003), 113�
129.

[7] D. Bourn and Z. Janelidze, Approximate Mal'tsev operations, Theory and Appl.

of Categ. 21 No. 8 (2008), 152�171.

[8] A. Carboni, J. Lambek and M.C. Pedicchio, Diagram chasing in Mal'cev cate-
gories, J. Pure Appl. Algebra 69 (1990), 271�284.

[9] A. Carboni, M.C. Pedicchio and N. Pirovano, Internal graphs and internal
groupoids in Mal'tsev categories, Canadian Math. Soc. Conf. Proc. 13 (1992), 97�
109.

[10] A. Carboni, M.C. Pedicchio and J. Rosický, Syntactic characterizations of vari-
ous classes of locally presentable categories, J. Pure Appl. Algebra 161 (2001), 65�90.

[11] P. Freyd, Abelian categories, Harper and Row (1964).

[12] P. Gabriel and F. Ulmer, Lokal präsentierbare kategorien, Springer-Verlag (1971).

[13] M. Gran andM.C. Pedicchio, n-Permutable locally �nitely presentable categories,
Theory and Appl. of Categ. 8 No. 1 (2001), 1�15.

[14] A. Grothendieck, Sur quelques points d'algèbre homologique, Tohôku Math. J. 2

(1957), 199�221.

[15] P.-A. Jacqmin, Embedding theorems in non-abelian categorical algebra, PhD thesis,

UCL (2016).

[16] P.-A. Jacqmin and Z. Janelidze, Unconditional exactness properties, in prepara-

tion.

[17] S. Lubkin, Imbedding of abelian categories, Trans. Amer. Math. Soc. 97 (1960),
410�417.

[18] M. Makkai, Strong conceptual completeness for �rst order logic, Ann. Pure Appl.

Logic 40 (1988), 167�215.

[19] A. I. Mal'tsev, On the general theory of algebraic systems, Mat. Sbornik, N.S. 35
(77) (1954), 3�20 (in Russian); English translation: American Mathematical Society

Translations (2) 27 (1963), 125�142.



5. Applications 21

[20] B. Mitchell, The full imbedding theorem, Amer. J. Math. 86 (1964), 619�637.

Institut de recherche en mathématique et physique
Université catholique de Louvain
Chemin du Cyclotron 2
B 1348 Louvain-la-Neuve
Belgium

and

Centre for Mathematical Structures
Department of Mathematical Sciences
Stellenbosch University
Private Bag X1
Matieland 7602
South Africa


